数学好玩 好玩的数学内容
- 传奇
- 2025-12-18 08:08:44
- 2
一、好玩的数学内容
1、你觉得数学有趣吗?可能很多孩子不觉得。
2、数学往往被看成一堆公式、定理的堆积,以勾股定理为例,它将几何与代数很好地联系起来,是我们必学的一个数学知识点,孩子们学到的勾股定理很大概率是这样的:a²+b²=c²,但这就是勾股定理的本质吗?当然不是,如果只这样学,很多孩子可能连a、b、c是什么都不知道。
3、我们忘记了数学学习中最该了解的三件事:一是数学知识与生活的联系,二是数学知识的来龙去脉,三是数学精神的实质和思想方法。
4、很多人只知道记住勾股定理的表达式,却不会熟练应用。问题就出在我们不知道勾股定理与生活有什么联系,无法做到真正理解它的精髓。

5、据说大禹治水,根据地势高低,决定水流走向,就是应用勾股定理的结果。再比如:家装时,工人为了判断一个墙角是否为标准直角,会从墙角向两个墙面量出30cm、40cm并标记在一个点上,然后量这两点间距离是否是50cm,如果存在误差,则说明墙角不是直角,这也是应用勾股定理的结果。
6、了解了勾股定理在实际生活中的应用之后,你是不是好奇它的“来历”?勾股定理在西方被称为毕达哥拉斯定理,毕达哥拉斯之所以能发现这个定理,是因为善于思考生活中的细节,而不是靠待在屋子里面对着课桌,拿着纸和笔冥思苦想。
7、毕达哥拉斯有一次应邀参加一场聚会,这位主人的豪华宫殿里铺着正方形的大理石地砖,毕达哥拉斯发现以一块地砖的对角线为边画一个正方形,这个正方形的面积恰好等于两块地砖的面积和。他很好奇,于是再以两块地砖拼成的矩形对角线做另一个正方形,他发现这个正方形面积等于五块地砖的面积。
8、至此毕达哥拉斯做了大胆的假设:任何直角三角形,其斜边的平方恰好等于另两边的平方之和。这就是勾股定理的由来。
9、刚刚我们也说了勾股定理探究的过程,这个过程充分体现了一个重要的数学思想——“数形结合”:把三角形有一个直角的“形”转化到三边之间的“数”。同时还体现了“从特殊到一般的数学思想”,先探求特殊直角三角形三边的关系,再由特殊到一般,探求一般直角三角形三边的关系。还有从探求边到面积的转化等等,无一不体现着数学思想的奥妙。
二、好玩的数学的摘抄
1、数学的本质在於它的自由。——康扥尔
2、二分之一个证明等于0。——高斯
3、第一是数学,第二是数学,第三是数学。——伦琴
4、当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可能理解。这时便想,是否可以将问题化简些呢﹖往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。——希尔伯特

5、当数学家导出方程式和公式,如同看到雕像美丽的风景,听到优美的曲调等等一样而得到充分的快乐。——柯普宁

6、不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上。——罗巴切夫斯基

7、数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。——开普勒
8、数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。——冯纽曼
9、数学家本质上是个着迷者,不迷就没有数学。——努瓦列斯
10、数学家毫不顾及声明或猜想,他们仅仅根据定义和公理,并用论证和推理来演绎每一件事。事实上,现在把那些仅由猜想或假说建立起来的理论称之为科学事不正确的,因为猜想往往求助于某种见解或主张,因而他不能由此而产生知识。
本文由游戏攻略于2025-12-18发表在九亦思游戏攻略网,如有疑问,请联系我们。
本文链接:http://yx.kou1zi.cn/post/50210.html